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Quantum thermoactivation of nanoscale magnets

D. A. Garanin*
I. Institut für Theoretische Physik, Universita¨t Hamburg, Jungiusstrasse 9, D-20355 Hamburg, Germany

~Received 22 May 1996!

The integral relaxation time describing the thermoactivated escape of a uniaxial quantum spin system
interacting with a boson bath is calculated analytically in the whole temperature range. For temperaturesT
much less than the barrier heightDU, the level quantization near the top of the barrier and the strong frequency
dependence of the one-boson transition probability can lead to the regularly spaced deep minima of the
thermoactivation rate as a function of the magnetic field applied along thez axis. @S1063-651X~97!13203-2#

PACS number~s!: 05.40.1j, 75.50.Tt
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The problem of the escape rate of a uniaxial magn
particle has remained in the focus of attention since the w
of Néel @1#, who stressed the role of thermal agitation. Du
ing the last years the interest in this problem has increase
view of possible applications to the information storage a
in connection with the magnetic quantum tunneling~MQT;
see e.g., Ref.@2#!.

For classically large particles, the thermoactivation esc
rate was first calculated by Brown@3#, who derived the
Fokker-Planck equation for an assembly of particles a
solved it perturbatively in the high-temperature ca
DU!T, and with the use of the Kramers transition-sta
method@4# for T!DU. In these both limiting cases the tim
dependence of the average magnetization is a single e
nential, and the relaxation rate of ferromagnetic particle
given by the lowest eigenvalueL1 of the Fokker-Planck
equation. ForT;DU the latter is no longer the case, and t
best measure of the relaxation rate is the integral relaxa
time t int determined as the area under the magnetization
laxation curve after a sudden infinitesimal change of the l
gitudinal magnetic field@5–8#. The quantityt int can be cal-
culated analytically in the whole range of temperatures,
t int

21 coincides withL1 in the asymptotic regions.
With the miniaturization of the magnetic particle both t

thermoactivation and the MQT escape rates increase; the
ter becomes dominant below the crossover temperatureT0
determined by the interactions noncommuting with the
eratorSz , and hence causing the MQT. For information st
age applications the most important are systems with sm
tunneling interactions and correspondingly lowT0. In this
case the tunneling level splittings can be calculated pertu
tively @9# for the arbitrary spin valuesS, which can be ad-
vantageous in comparison to the semiclassical instan
method~see, e.g., Ref.@2#! for nanoscale systems withmod-
eratelyhigh spin values as the recently synthesized Mn cl
ters havingS510 and 12 in the ground state@10,11#. For
such systems with not too largeS and lowT0, the thermo-
activation escape rate can be dominant down to the temp
tures where it changes due to the spin level quantization

The purpose of this paper is to calculate the thermoa
vation escape rate of a quantum spin system in terms of
integral relaxation time starting from a spin-bath Ham
tonian of the type
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H52HSz2DSz
21Hb

2(
q
Vq~h–S!~aq

†1a2q!2(
pq

Vpq~h–S!ap
†aq , ~1!

where the arbitrary vectorh is for simplicity set to be
hx5hy5hz51. If the bath excitations described by the o
eratorsa† anda are phonons, then the coupling to the ba
that is linear in spin variables is prohibited by the tim
reversal symmetry. This means that modulations of the c
tal field by phonons do not produce afieldlike perturbation
on a spin system, and henceh50. Thus, in this case it would
be better to write quadratic terms of the typeSaSb instead of
(h–S) in Eq. ~1! ~see, e.g., Ref.@12#!. Nevertheless, we will
use Eq.~1! with Hb and the couplingsV characteristic for
phonons, since it is the most suitable for the first presenta
of the method and describes the main qualitative feature
the relaxation of a spin system. Moreover, Hamiltonian~1!
means the direct quantum generalization of the Lange
field formalism used by Brown@3# ~which is subject to the
same criticism!, and thus provides a link to the known resu
for classical ferromagnetic particles.

If the spin-bath coupling is weak, the equation of moti
for the density matrix of the spin system can be obtained
the second order of perturbation theory, and the diagonal
of it is the well-known system of the kinetic balance equ
tions for the occupation numbersNm of the spin statesum&

Ṅm5 l m
2 ~Wm,m11Nm112Wm11,mNm!

1 l m21
2 ~Wm,m21Nm212Wm21,mNm!. ~2!

Here l m5AS(S11)2m(m11) are the matrix elements o
the operatorsS6 , and the ‘‘spin-free’’ transition probabili-
tiesW are given by

Wm11,m5W~vm11,m!5W~1!1W~2!, ~3!

where

vm11,m[«m112«m52H2D~2m11! ~4!

are the transition frequencies,«m52Hm2Dm2 are the spin
energy levels,
2569 © 1997 The American Physical Society
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W~1!~v!5(
q

uVqu2$~nq11!pd~vq1v!1nqpd~vq2v!

~5!

is the contribution of the one-phonon emission and abso
tion processes, and

W~2!~v!5(
pq

uVpqu2np~nq11!pd~vp2vq2v! ~6!

is that of the two-phonon~Raman scattering! ones. One can
check that the transition probabilities satisfy the detailed b
ance condition:W(v)5W(2v)exp(2v/T), which ensures
the static distribution of the form

Nm
~0!5

1

Z
exp~2«m /T!, Z5 (

m52S

S

exp~2«m /T!. ~7!

The quantitiesW(v), with v.0 describing transitions to
upper energy levels, become exponentially small at low te
peratures. For spin-phonon couplings of the type

Vq;u1S vq

V D 1/2, Vpq;u2
~vpvq!

1/2

V
, ~8!

whereV5Mc2, M is the unit cell mass,vq5cq, andc is
the phonon velocity, the estimation ofW(v) with v,0 with
the help of Eq.~5! and ~6! yields ~cf. Ref. @13#!

W~1!;
u1
2uvu3

Q4 ~nuvu11!>H u1
2v2T/Q4, uvu!T

u1
2uvu3/Q4, T!uvu

~9!

and

W~2!;H u2
2uD

5T2/Q8, uvu!uD!T

u2
2T7/Q8, uvu!T!uD

u2
2T4uvu3/Q8, T!uvu!uD .

~10!

Here uD;\vqmax
is the Debye temperature,Q4[VuD

3

;\3r2c5, andr is the density of the lattice.
It is convenient to introduce the reduced variables

j[
SH

T
, a[

S2D

T
, h[

j

2a
5

H

2SD
, ~11!

which are equivalent to those used for the description
classical single-domain magnetic particles@3,5# and should
be kept constant ifS→`. In this limit the transition frequen-
cies vm11,m of Eq. ~4! tend to zero and, accordingly, th
frequency-independent two-phonon transition probabilit
W(2) given by Eq.~10! govern the relaxation. Since the o
cupation numbers of the neighboring levels in Eq.~2! be-
come close to each other, Eq.~2! goes over to the classica
Fokker-Planck equation@3,5–7#. An extreme quantum cas
is realized for a three-level system with a barrier (S51), for
which the relaxation between the two lowest levels throu
the highest one~the so-called ‘‘resonance fluorescence’’! has
at low temperatures an exponentially small ra
G;exp(2D/T) @13#.
p-

l-

-

f

s

h

The relaxation of any initial state described by the syst
of the first-order differential Eqs.~2! is described in general
and particularly at intermediate temperatures, by 2S expo-
nentials of the typeAiexp(2Lit), whereL i are the corre-
sponding eigenvalues. In such situations the best measu
the relaxation rate is the integral relaxation timet int deter-
mined as the area under the magnetization relaxation c
after a sudden infinitesimal change of the applied fieldH:

t int[E
0

`

dt
mz~`!2mz~ t !

mz~`!2mz~0!
. ~12!

Here mz[^Sz&/S is given at equilibrium by
mz5B(j,a)5] lnZ/]j. One can calculatet int analytically at
arbitrary temperatures from Eqs.~2! producing the low-
frequency expansion of the linear longitudinal dynamic s
ceptibility @5#

xz~v!>xz~11 ivt int1••• !. ~13!

Herexz[]mz /](SH)5B8/T is the static susceptibility, and
B8[]B(j,a)/]j. Taking into account that the alternatin
field DHz(t)5DHz0exp(2ivt) modulates the transition fre
quencies~4!, using the detailed balance condition and intr
ducingNm>Nm

(0)(11Qm) with Qm5qm(v)SDHz(t)/T one
comes in the linear approximation inDHz(t) to the system
of equations

l m
2Wm11,m~qm112qm!1 l m21

2 Wm21,m~qm212qm!1 ivqm

5~ l m
2Wm11,m2 l m21

2 Wm21,m!/S. ~14!

The susceptibilityxz(v) can now be written as

xz~v!5
1

TS (
m52S

S

mNm
~0!qm~v!. ~15!

The second-order finite-difference equation~14! should be
solved perturbatively inv; this can be done analytically
since the first line of Eq.~14! contains only the differences o
qm , and the order of Eq.~14! can thus be lowered to 1. In
the static limit, Eq.~14! reduces toqm11

(0) 2qm
(0)51/S with

the solutionqm
(0)5m/S2B. In first order inv one can in-

troduce pm[ l m
2Wm11,mexp(2«m/T)@qm11

(1) 2qm
(1)#, satisfying

pm2pm2152 ivqm
(0)exp(2«m/T). Finding pm and then

qm
(1) , and using Eqs.~15! and ~13!, one obtains the fina
result

t int5
1

B8 (
m52S

S21
Fm

2

Nm
~0!l m

2Wm11,m
, ~16!

whereNm
(0) is given by Eq.~7! and

Fm5 (
k52S

m SB2
k

SDNk
~0! . ~17!

The formulas above are valid at all temperatures, and t
are a direct quantum generalization of the classical result
Ref. @5#, which are recovered in the limitS→`. At high
temperatures wherea,j!1 andW(1)!W(2), the calculation
in Eqs.~17! and ~16! yields
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t int
21>LNF12

2a

5 S 12
1

2SD S 11
3

2SD G , ~18!

with LN[2W(2) ~cf. Ref. @3#!. At a,j;1 ~i.e.,T;DU) the
sums in Eqs.~17! and~16! should be performed numerically
The recent numerical calculations of Ref.@6# for the classical
model have shown that in the unbiased case,j5H50, the
difference betweent int

21 and the lowest eigenvalue of th
Fokker-Planck equationL1 does not exceed 1.2% in th
whole range of temperatures.L1 remained in the focus o
interest since the work of Brown@3#, but for T;DU it has
no direct physical meaning and cannot be represented
closed analytical formula. One can expect that the quant
t int

21 andL1 are even closer to each other in the unbias
quantumcase, since the difference between them disapp
for S51/2.

At low temperaturesa@1, the thermoactivation escap
rate of the particle becomes exponentially small. Here,
was recently discovered in Ref.@7#, t int

21@L1 for sufficiently
strong bias (h*0.2). This effect was physically explaine
@8# as resulting from the depletion of the upper potential w
and the competition in the integral relaxation timet int of the
overbarrier thermoactivation with the rateL1 and the fast
relaxation inside the lower well. These two relaxati
mechanisms can be analytically separated forS@1 since the
summand of Eq.~16! consists fora,j@1 of two peaks cen-
tered at the barrier top and in the lower well (m;S). The
barrier contributiont int,B can be related toL1 taking into
account the depletion effect@8#; in the small bias case
h!1, which will be considered henceforth, one obtains

L1
21>t int,BB8~j,a!cosh2j. ~19!

For j50 one hasB8>1 andL1>t int
21 . SinceNk

(0) in Eq.
~17! is strongly peaked at low temperatures in the we
(k;6S), and is small elsewhere, the functionFm is inde-
pendent onm and given byFm>1/(2 cosh2j) in the main
part of the phase space, including the barrier region. T
Eqs.~19! and ~16! can be combined to

L1>
4S~S11!cosh2j

Z~j,a! F (
m52`

`
exp~«m /T!

Wm11,m
G21

, ~20!

where the exponential factor;1/Nk
(0) in Eq. ~20! cuts the

sum actually atm;Sa21/2!S @see Eqs.~4! and ~11!#. The
partition functionZ in Eq. ~20! for h!1 is given by

Z>H ~S/a!eacoshj, SD!T!S2D

2eacoshj, T!SD,
~21!

whereSD is the level spacing in the wells.
The sum in Eq.~20! depends on the relation betwee

temperatureT and the level spacing near the top of the b
rier ;D, as well as on the role played by the one- a
two-phonon probabilitiesW(1) andW(2). For not too low
temperatures this sum can be approximated by the inte
overx[m/S, and the quantityW(1) of Eq. ~9! can be in this
case represented in the form
a
s
d
rs

s

ll

s

n

-

ral

Wm11,m
~1! >W̄~1!

vm11,m
2

D2 , W̄~1!;
u1
2D2T

Q4 , ~22!

whereasW(2)}T7 is given forT!uD by the second line of
Eq. ~10!. One can see that the integral overx in Eq. ~20! can
be cut either by the exponential function atDx;a21/2 or by
the denominatorW(vm11,m) atDx;S21AW(2)/W̄(1). Cross-
over between these two regimes occurs at the temperatu

T12;QS DQ D 1/5S u1
u2

D 2/5 ~T12!uD!. ~23!

Taking Eq.~21! into account, one obtains

L1>A$exp@2a~11h!2#1exp@2a~12h!2#%, ~24!

whereh!1, and the prefactorA is given by

A>5
2W~2!p21/2a3/2, SD,T12!T

2SAW̄~1!W~2!p21a, SD!T!T12

SW~2!p21/2a1/2, T12!T!SD

S2AW̄~1!W~2!p21, T!T12,SD.

~25!

The first of these expressions coincides with that of Bro
@3# in the high-barrier limit, if one introducesLN[2W(2).
The temperature dependences ofA readT11/2, T3, T13/2, and
T4, respectively.

The continuous approximation above is only valid
Dx;S21AW(2)/W̄(1)@S21, or Dm@1. This condition sets
one more characteristic temperature

Tq;QS DQ D 1/3S u1
u2

D 1/3 ~Tq!uD!, ~26!

below which the level quantization becomes essential. In
temperature intervalD!T&Tq the sum in Eq.~20! con-
verges atDm;1, whereas the exponential factors can still
neglected. In this caseL1 shows a sinusoidal dependence
the longitudinal magnetic field in theweak-field region
H;D, the amplitude of which is exponentially small fo
W(2)*W̄(1) but becomes great forW(2)!W̄(1). In the range
D!T&Tq ,SD one obtains formula~24!, with the prefactor
given by

A>S2H 4p2sin
2FpS H

2D
1S1

1

2D GW̄~1!1W~2!J . ~27!

This result shows deep minima of the thermoactivation
cape rateL1 for H/(2D)561/2,63/2, . . . for S integer
and forH/(2D)50,61,62 . . . for S half-integer. At such
fields two levels near the barrier top become degenerate,
the leading contribution to the transition probability betwe
them,W(1), disappears.

In the extreme quantum temperature regionT!D, the
sum in Eq.~20! is again determined by the exponential fa
tor. Here, however, only one or maximally two terms of t
sum contribute to Eq.~20!. If there is an energy level with
m5mmax just at the top of the barrier, like forS integer and
H50 (mmax50), then equal contributions to Eq.~20! come
from the terms withm5mmax andm5mmax21, which de-
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scribe transitions between three upper levels w
m5mmax,mmax61. If there are two degenerate levels to t
right and left from the barrier top, like forS half-integer and
H50, then the leading contribution is due to the term in E
~20! describing transitions between these two levels. T
general result is given by formula~24! with

A>S~S11!exp~2D«mmax
/T!

3F 1

Wmmax11,mmax

1
1

Wmmax21,mmax
G21

, ~28!

where mmax52H/(2D)1F, F[F@H/(2D)1S11/2#
21/2, D«mmax

5DF2 is the mismatch between«mmax
and

the barrier top, andF(X) is the fractional part ofX. The
transition probabilitiesW in Eq. ~28! are dominated by
W(1)}uvu3 @see Eq.~9!# with vmmax61,mmax

52D(162F),

and the escape rateL1 shows qualitatively the same mag
netic field dependence us that given by Eq.~27!. Note that in
this low-temperature limit the prefactorA is temperature in-
dependent, excluding the narrow field regions where i
determined byW(2) and is very small.

Summarizing, the thermoactivation escape rate of a qu
tum ferromagnetic particle was calculated microscopically
the whole temperature range, allowing for the frequency
pendence of the transition probabilities and for the quant
tion of the energy levels. Even in the low-temperature ran
where the escape rate is exponentially small, the situatio
determined by several characteristic energies and there
rather many limiting cases for the prefactorA in Eq. ~24!,
which can be difficult to observe if the corresponding te
perature intervals are not wide enough. Not trying to g
J

t.

s-

T.
h
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e

s
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n
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e,
is
re
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e

numerical estimations, since the Hamiltonian~1! is only a
schematic one suitable mainly for the presentation of
method and for a qualitative analysis, we make only so
general remarks about the results obtained. First, the gre
variety of different temperature intervals can be realized
particles containing a macroscopically large numberN of
magnetic ions and having an effective spinSeff;N@1.
However, only the classical case@the first line of Eq.~25!#
can be practically observed, whereas in other casesL1 is
unmeasurably small due to the too large values ofa.

Better candidates for searching for the nonclassical th
moactivation rates predicted here are nanoscale systems
as Mn12 clusters withS510 having a strong uniaxial aniso
ropy (DU5S2D561 K! @10#. These clusters show a supe
paramagnetic behavior, and for 2 K<T<8 K the prefactor
A in Eq. ~24! is temperature independent. The latter cor
sponds to the extreme quantum case Eq.~28!, which could,
however, be expected only forT&D;0.6 K. In the main
range of temperaturesT&S2D561 K, one cannot expec
one of the pure limiting forms ofA, and should resort to
using Eq.~20! becauseS510 is not large enough. Neverthe
less, one qualitative feature always remains: If the relaxa
is governed by the two-phonon processes, one can expe
strong temperature dependence ofA, and, if the one-phonon
processes are dominant, then the temperature dependen
A is weak or absent, but there should be a strong depend
on the magnetic field of the type~27!.
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