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Quantum thermoactivation of nanoscale magnets
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The integral relaxation time describing the thermoactivated escape of a uniaxial quantum spin system
interacting with a boson bath is calculated analytically in the whole temperature range. For tempdratures
much less than the barrier heightU, the level quantization near the top of the barrier and the strong frequency
dependence of the one-boson transition probability can lead to the regularly spaced deep minima of the
thermoactivation rate as a function of the magnetic field applied along #hés.[S1063-651X97)13203-2

PACS numbg(s): 05.40:+j, 75.50.Tt

The problem of the escape rate of a uniaxial magnetic #=—-HS,—DS2+H,
particle has remained in the focus of attention since the work
of Neel [1], who stressed the role of thermal agitation. Dur-
ing the last years the interest in this problem has increased in
view of possible applications to the information storage and

in connection with the magnetic quantum tunnelidQT:  \here the arbitrary vectom is for simplicity set to be

see e.g., Ref2]). = ny=n,=1. If the bath excitations described by the op-
For classically large particles, the thermoactivation escapgrxat Ty e ¢ "

+ )
rate was first calculated by Browf8], who derived the orsa anda are phonons, then the coupling to the bath

Fokker-Planck tion bly of el hat is linear in spin variables is prohibited by the time-
OKKer-Flanck equation for an assemply Of particles angg, q g symmetry. This means that modulations of the crys-
solved it perturbatively in the high-temperature case

. " tal field by phonons do not producefialdlike perturbation
AU<T, and with the use of the Kramers transmon-stateon a spin system, and henge=0. Thus, in this case it would

method[4] for T<AU. In these both Ii.miti.ng cases _the time be better to write quadratic terms of the typgS, instead of
depgndence of the average magnetization Is a smgl'e exp 7-9) in Eq. (1) (see, e.g., Ref.12]). Nevertheless, we will
nential, and the relaxation rate of ferromagnetic particles i se Eq.(1) with H, and the couplingd/ characteristic for

g|vent. by 't:heTIO\iA\/(laJstthelgI]etrt]va!uﬁl IOf the tl;okker-PIané:I:h phonons, since it is the most suitable for the first presentation
equation. For € 1atter 1S no longer the case, and € ot 1o method and describes the main qualitative features of
best measure of the relaxation rate is the integral relaxatm{he relaxation of a spin system. Moreover, Hamiltonian
time Tint determined as the area u.nde_r the magnetization "Sheans the direct guantum generalization’of the Langevin-
laxation curve after a sudden infinitesimal change of the lonﬁeld formalism used by Browii3] (which is subject to the
g:}:ﬁ;ﬂ dal‘a?;%f:l?yf'iiI?ﬁg?\]/hglgergﬁggtgﬂgg;enra?ﬁrg:"an ame criticisny, and thus provides a link to the known results
.- coincides withA, in the asymptotic regions ’ ' Classwa_l ferromagne_t|c partlcles. ; -

int ©  WIThA 1 In ymp Sglons. If the spin-bath coupling is weak, the equation of motion

With the miniaturization of the magnetic particle both the to the density matrix of the spin system can be obtained in

thermoactivation and the MQT escape rates increase; the 1afie second order of perturbation theory, and the diagonal part
ter becomes dominant below the crossover temperaiyre of it is the well-known system of the kinetic balance equa-

determined by the interactions noncommuting with the op+ions for the occupation numbe, of the spin statesm)
eratorS,, and hence causing the MQT. For information stor-

age applications the most important are systems with small )

tunneling interactions and correspondingly Ia. In this Nim=I(Wm,m+1Nm+ 1~ W+ 1,mNm)

case the tunneling level splittings can be calculated perturba- 2 _

tively [9] for the arbitrary spin valueS, which can be ad- -1 (Wmm—1Nm-1=Win—1,mNm)- @

vantageous in comparison to the semiclassical instanton

method(see, e.g., Ref2]) for nanoscale systems withod-  Herel,=S(S+1)—m(m+1) are the matrix elements of

eratelyhigh spin values as the recently synthesized Mn clusthe operatorsS. , and the “spin-free” transition probabili-

ters havingS=10 and 12 in the ground stafé0,11]. For  tiesW are given by

such systems with not too larggand low Ty, the thermo-

activation escape rate can be dominant down to the tempera- Wi s 1m=W(wm; 1Vm):\,\/(l)JrV\/(z), 3)

tures where it changes due to the spin level quantization.
The purpose of this paper is to calculate the thermoacti-
. . . where

vation escape rate of a quantum spin system in terms of the

integral relaxation time starting from a spin-bath Hamil-

tonian of the type Omi1m=€m+1~ €m= —H—D(2m+1) 4

—% vq<n~8>(a;+a_q>—é Vog(7-Salay, (1)

are the transition frequencies,,= —Hm—Dm? are the spin
*Electronic address: garanin@physnet.uni-hamburg.de energy levels,
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D(w)= E |Vq|2{(nq+ D 7é(wgt+ o)+ Nngmd(wq— )
q
5
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The relaxation of any initial state described by the system
of the first-order differential Eqg2) is described in general,

and particularly at intermediate temperatures, I8/ expo-
nentials of the typeA,exp(—At), where A; are the corre-

is the contribution of the one-phonon emission and absorpsPonding eigenvalues. In such situations the best measure of

tion processes, and

W2 (w)=2 Voo 2Np(ng+ 1) m8(wp— wg— o)  (6)
pq

is that of the two-phonoffRaman scatteringones. One can

check that the transition probabilities satisfy the detailed bal-

ance condition’W(w)=W(— w)exp(—w/T), which ensures
the static distribution of the form

S
1
=5 X~ em/T), z=m:E_S exp—en/T). (7)

The gquantitiesW(w), with »>0 describing transitions to

the relaxation rate is the integral relaxation timg deter-
mined as the area under the magnetization relaxation curve
after a sudden infinitesimal change of the applied flétd

2(20) —my(t)
o= |, iy (42
ere m,=(S,)/S is given at equilibrium by

m,=B(&,a) =0 InZ/9¢. One can calculate;,; analytically at
arbitrary temperatures from Eq$2) producing the low-
frequency expansion of the linear longitudinal dynamic sus-
ceptibility [5]

=y, (l+ioTyt - (13

X ) ).

upper energy levels, become exponentially small at low temHere x,=dm,/d(SH)=B'/T is the static susceptibility, and

peratures. For spin-phonon couplings of the type

1/2
(wpwq) !

1/2
@q
Vo~ el<5> , Vg~ la—q — 8
whereQ=Mc?, M is the unit cell masswq=cq, andc is
the phonon velocity, the estimation Wf(w) with <0 with

the help of Eq.(5) and(6) yields (cf. Ref.[13])

Wil 2l |3(n r1)= 2w’TIO% |o|<T ©
eF Ml 020304 T<|w|
and
0337?08, |w|<Op<T
W2 ~{ 65T7108,  |w|<T<6p (10)
05T w3108, T<|w|<6p.

Here 0p~fiw, is the Debye temperatured*=Q6;

~#3p?c®, andp is the density of the lattice.
It is convenient to introduce the reduced variables

$D
a=—,

T

SH
T

§
h=5-=

11

2SD’

which are equivalent to those used for the description of

classical single-domain magnetic partic(&5] and should
be kept constant i6— . In this limit the transition frequen-
cies wmi1m Of EQ. (4) tend to zero and, accordingly, the

frequency-independent two-phonon transition probabilitiegvhere

W) given by Eq.(10) govern the relaxation. Since the oc-
cupation numbers of the neighboring levels in Eg). be-
come close to each other, E@) goes over to the classical
Fokker-Planck equatiof8,5—-7. An extreme quantum case
is realized for a three-level system with a barri&1), for

'=9B(&,a)/0é. Taking into account that the alternating
field AH,(t) = AH exp(—iwt) modulates the transition fre-
quenciedq4), using the detailed balance condition and intro-
ducingN,=N(1+Q,,) with Q= qm(®)SAH,(t)/T one
comes in the linear approximation ikH,(t) to the system
of equations

Om) tiwgn
(14

qm) +1 r2n— 1Wm—1,m(qm— 1™
151 W 1)/S.

2

Im\Nm+ 1,m(Qm+1_
_ (12
_(Ime+1,m_

The susceptibilityy,(w) can now be written as

S

TSm mN(n?)qm(w)-

X @)= (15

The second-order finite-difference equatid®) should be
solved perturbatively inw; this can be done analytically
since the first line of Eq14) contains only the differences of
Om, and the order of Eq14) can thus be lowered to 1. In
the static limit, Eq.(14) reduces toq'®),—q{®=1/S with
the solutiong{®¥’=m/S—B. In first order inw one can in-
troduce pm=I2Wp: 1 meXpen/MAE:,—qd], satisfying
Pn—Pm_1= —i0qQexp(—e,/T). Finding p, and then
() and using Egs(15) and (13), one obtains the final

m

result
S-1 2

1 dr,
Tint B/mz | Wm+1m (16)

N is given by Eq.(7) and

il k
dn= > |B—=|NO. (17)

K=s S

The formulas above are valid at all temperatures, and they

which the relaxation between the two lowest levels throughare a direct quantum generalization of the classical results of

the highest onéthe so-called “resonance fluorescengéias
at low temperatures an exponentially small
I'~exp(—A/T) [13].

Ref. [5], which are recovered in the limB—c. At high

ratetemperatures where,é<1 andW®<W®), the calculation

in Egs.(17) and(16) yields
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1+ 3
5 2S 2S

Ti;tlEAN 2S

l (1) . _(1) w§n+ 1m —(1) 0iD2T
' (18) Wit 1m=W “D? W~ 0% (22)

with Ay=2W? (cf. Ref.[3]). At a,é~1 (i.e., T~AU) the whereasW®«T7 is given for T<#p by the second line of
sums in Egs(17) and(16) should be performed numerically. Ed-(10). One can see that the integral ovein Eq. g/zzo) can
The recent numerical calculations of REg] for the classical ~Pe cut either by the exponential function~a = or by
model have shown that in the unbiased caseH=0, the  the denominatoW(wpm.1m) atAx~S~'YW/WM), Cross-
difference betweenr, ! and the lowest eigenvalue of the over between these two regimes occurs at the temperature
Fokker-Planck equatior\; does not exceed 1.2% in the D\ Y5/ 9.\ 25

yvhole range of temperatured.; remained in the fo_cus of TlZN@(_) (_1> (T15<0p). (23
interest since the work of Browi8], but for T~AU it has 06 0,

no direct physical meaning and cannot be represented by

closed analytical formula. One can expect that the quantitiefak'ng Eq.(21) into account, one obtains

Tt @nd A, are even closer to each other in the unbiased A=A{exd —a(1+h)?]+exd —a(1—h)2]}, (24
guantumcase, since the difference between them disappears
for S=1/2. whereh<1, and the prefactoA is given by
At low temperaturese>1, the thermoactivation escape 212 302
rate of the particle becomes exponentially small. Here, as W "™, SD,Tp<T
was recently discovered in Réf], > A, for sufficiently ZSWTF%& SD<T<Ty,
strong bias =0.2). This effect was physically explained A= 2) _—12 12 (25)
[8] as resulting from the depletion of the upper potential well SW2a~ V212 T1,<T<SD
and the competition in the integral relaxation timg of the SVWOIWD 71 T<T,,,SD.

overbarrier thermoactivation with the rate, and the fast

relaxation inside the lower well. These two relaxationThe first of these expressions coincides with that of Brown
mechanisms can be analytically separated3erl since the [3] in the high-barrier limit, if one introduced y=2W®).
summand of Eq(16) consists fora,é>1 of two peaks cen- The temperature dependencesfofead T2 T3, T1%2 and
tered at the barrier top and in the lower weth{S). The  T* respectively.

barrier contributionr;,; g can be related to\, taking into The continuous approximation above is only valid if

account the depletion effed8]; in the small bias case, Ax~s 1\W®@/WDs>s"1 or Am>1. This condition sets
h<1, which will be considered henceforth, one obtains one more characteristic temperature

A*lg § B’ , H . 19 D 1/3 0 1/3
1= 7B (£, @)cOsHiE 9 rolo] (7] T, o

For £=0 one hasB’'=1 andA;=r,}. SinceN(” in Eq. _ o _
(17) is strongly peaked at low temperatures in the WeIISbelow which the level quantization becomes essential. In the
(k~=9), and is small elsewhere, the functidn, is inde- temperature intervaD <T=T, the sum in Eq.(20) con-

pendent orm and given byd, =1/(2 cosRé) in the main verges alkm~ 1, whereas the exponential factors can still be

part of the phase space, including the barrier region. The eglecte(_j. In_ this cask, ;hovys a ;inusoidal d‘?pe”de’.‘ce on
Egs.(19) and(16) can be combined to the longitudinal magnetic field in theveak-field region

H~D, the amplitude of which is exponentially small for
W@=W® put becomes great faV2<W®. In the range

o -1
= w E M D<T=<T,,SD one obtains formul&24), with the prefactor
Z(§,a) m=—o Wmniim given by
where the exponential factor 1/N{®) in Eq. (20) cuts the AESZ(iSiHZ W(i+s+ 1 VV1>+W(2>]_ @7
sum actually am~ Sa~Y?<S [see Eqs(4) and (11)]. The ? 2D 2

partition functionZ in Eq. (20) for h<1 is given by _ . L
This result shows deep minima of the thermoactivation es-

cape rateA, for H/(2D)=+1/2,=3/2, ... for S integer
(21) and forH/(2D)=0,+1,=2 ... for S half-integer. At such

[(S/a)e”‘coskf, SD<T<SD

2e“costg, T<SD, fields two levels near the barrier top become degenerate, and
the leading contribution to the transition probability between
whereSD is the level spacing in the wells. them, W), disappears.

The sum in Eq.(20) depends on the relation between In the extreme quantum temperature regibwD, the
temperaturel’ and the level spacing near the top of the bar-sum in Eq.(20) is again determined by the exponential fac-
rier ~D, as well as on the role played by the one- andtor. Here, however, only one or maximally two terms of the
two-phonon probabilitiedV?) and W), For not too low sum contribute to Eq(20). If there is an energy level with
temperatures this sum can be approximated by the integrah=m.,just at the top of the barrier, like f& integer and
overx=m/S, and the quantity’v*) of Eq. (9) can be in this H=0 (m,,,=0), then equal contributions to E(R0) come
case represented in the form from the terms withm=m,,, and m=m,,— 1, which de-
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scribe transitions between three upper levels withnumerical estimations, since the Hamiltoniél) is only a
M= My, Mmax= 1. If there are two degenerate levels to theschematic one suitable mainly for the presentation of the
right and left from the barrier top, like fd half-integer and method and for a qualitative analysis, we make only some
H=0, then the leading contribution is due to the term in Eg.general remarks about the results obtained. First, the greatest
(20) describing transitions between these two levels. Thesariety of different temperature intervals can be realized for
general result is given by formul@4) with particles containing a macroscopically large numbiof
_ . magnetic ions and having an effective spas~N>1.
A=S(S+1ex Asmmax/T) However, only the classical cagthe first line of Eq.(25)]
1 1 -1 can be practically observed, whereas in other casgss
X W +W MJ , (28)  unmeasurably small due to the too large values of
m Mmax~1Mm Better candidates for searching for the nonclassical ther-
where m,,=—H/(2D)+F, F=Z[H/(2D)+S+1/2] moactivation rates_predicted hgre are nanosca_lle _syste_ms such
as Mny, clusters withS= 10 having a strong uniaxial anisot-
ropy (AU=S?D=61 K) [10]. These clusters show a super-
paramagnetic behavior, and for 2<Kr<8 K the prefactor
A in Eq. (29) is temperature independent. The latter corre-
sponds to the extreme quantum case @), which could,
however, be expected only far<D~0.6 K. In the main

+1m

max max max

-1/2, AsmmaxzDF2 is the mismatch betwees,  and

the barrier top, andF(X) is the fractional part ofiX. The
transition probabilitiesW in Eq. (28) are dominated by
W | w|? [see Eq.(9)] with oy .1, =—D(1%2F),
and the escape rat&; shows qualitatively the same mag-

netic field dependence us that given by E2f). Note that in range of temperatures=S?D=61 K, one cannot expect

:jhésécr)]g_etr?tmgirc?ltjlgiﬁ lIntqr:tethanprB?/]:/aﬁ‘:igfjIsréegﬁgresﬁreeremi:[ ione of the pure limiting forms oA, and should resort to
q tprmin d’b ) r?di verv small 9 using Eq.(20) becauses= 10 is not large enough. Neverthe-
ete ed .WV and1s very smatl. less, one qualitative feature always remains: If the relaxation
Summarizing, the thermoactivation escape rate of a qua

tum ferromagnetic particle was calculated microscopically ir:' S governed by the two-phonon processes, one can expect a

the whole temperature range, allowing for the frequency de§trong temperature_dependenceﬁofand, if the one-phonon

pendence of the transition prt')babilities and for the quantizaprpCesses are dominant, then the temperature dependence of

tion of the energy levels. Even in the low-temperature rangeA is weak or ak_)se_nt, but there should be a strong dependence
" : .~ 270n the magnetic field of the typ@7).

where the escape rate is exponentially small, the situation iS

determined by several characteristic energies and there are The author thanks Hartwig Schmidt for valuable com-
rather many limiting cases for the prefactarin Eq. (24),  ments. The financial support of Deutsche Forschungsgemein-
which can be difficult to observe if the corresponding tem-schaft under Contract No. Schm 398/5-1 is gratefully ac-
perature intervals are not wide enough. Not trying to giveknowledged.
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